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Abstract

• The popularity of the concept of Digital Twins (DT) is emerging.

• DTs aim to replicate physical equipment and systems in the digital world through effective integration
of data, models, and decision-support systems, promising a step change in productivity and
sustainable performance.

• Several challenges remain to be addressed: General lack of conceptual basis, functional description,
and a clear absence of fully established requirements.

• This workshop offers a generic framework for the functional description of a DT designed for
intelligent maintenance purposes, and besides that, list a set of requirements features to fulfill when
developing these tools, according to relevant scientific literature.

• The framework for the DT functional description and the DT requirements fulfillment has been tested
in real CBM Applications of TALGO, a well-known high speed train manufacturer. Thanks to this
exigent work environment, the methodology is sufficiently robust to be replicated in other
operational contexts.
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Abstract

• Introduction to:
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o The Digital Maintenance Management Framework (DMM Framework)

o The Digital Twins (DT) and their Requirements

• Case Study: Train Axle Bearing CBM DT

o CBM DT explanation using the DMM

o Anomalies Detection for CBM

o Failure Mode Classification for CBM

o Data Analytics for Prognostics for CBM

o Interaction with the CBM DT

o Fullfilment of DT Requirements
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Introduction

Rapid advances in digital technologies, data analytics
and artificial intelligence applied to maintenance.

These approaches have the potential to transform the
way maintenance is managed, generating a deeper
understanding of how complex industrial systems
behave and perform, thus enabling us to manage them
better.

In this context, data plays a pivotal role to enhance
maintenance management processes. Data can now be
extracted, prepared, and recorded, for specific decision-
making maintenance processes, automatically (this is
named ETL extraction-transformation-and-load of data).
Then, intelligent assets management systems apps
(IAMS Apps) support the different decision-making
processes organizing the collection and the analysis of
data.
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Introduction

IAMS Apps may also interact with additional tools such
as simulation tools, providing extra analytical services,
and they may add complementary data to the database
records with results provided by these software
elements. In addition to this asset knowledge
discovering, creation and storing (Marquez et al., 2020),
these IAMS Apps are provided by vendors together with
business intelligence features or Apps (BI Apps).

The BI App is designed for the interaction with the end
user and extract database records to present the
information according to the reporting needs and end
user requirements, on demand or at the time needed by
the business. A simple data flow of the process is
presented in Figure 1 (adapted from (Marquez et al.,
2020).
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Introduction. Digital MM Framework



7

Digital Twins and their Requirements

Maintenance is starting to be 
the most common application 
of DTs, followed by Prognostic 
Health Management (PHM) and 
lifecycle optimization and the 
sectors where it is most applied 
are manufacturing, energy 
industry and aerospace 
(Errandonea, Beltrán and 
Arrizabalaga, 2020).

Some authors sustain that in 
order to be considered a Digital 
Twin, a model must have some 
specific characteristics: 

Applicable to more
equipment or failure
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Combinable with different 
models and data

Extendable with new models
development

Precise tracking of system 
behavior and status

Decision making and human 
interaction

General process and system 
architecture integration
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Case Study. The Train Axle Bearing CBM DT

In the broadest understanding, CBM
solutions include detection,
diagnostics, and prediction of failure
modes that can be interpreted to
provide maintenance decision-
making (Guillén, Crespo, Gómez, &
Sanz, 2016). This case study DT has
been elaborated to detect, classify,
and predict train axle bearing
failures using bearings monitored
variables, in this case each bearing
was only monitored capturing its
temperature.
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DT Explanation using the DMM Framework 
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Anomalies Detection for CBM

Bearing Conditions 
(Dimension, Lubrication, Position Pi)

Railway & 
Infrastructure Conditions 

Train Conditions 
(Static and Dynamic loads, Speed)

Travel Conditions 
(Duration, Number of Stops)

Ambient Temperature 

Bearing Temperature 
(Ti,	i=1…4)

Physical 
Model

Figure 4. Factors (physical model inputs) conditioning a train axle bearing temperature.

A train axle bearing temperature depends
on a set of factors when the train is running
at the uninterrupted regime: the type and
dimensions of bearings, the antifrictional
and hydrodynamic properties of the
lubricant, the spaces between the bearing
rollers and rings, the static and dynamical
loads of the bearing, the train running
speed, the duration of travel without stops,
the ambient air temperature, and the road
curves [(Lunys, Dailydka, & Bureika, 2015),
(Mironov AA, 2008)] (see Figure 4).



11

This workshop DT departs from the fact
that the theoretical physical model to
calculate axle bearing temperatures could
be replaced by a data-driven bearing
temperature model as in (Crespo Márquez,
de la Fuente Carmona, Marcos, & Navarro,
2020).

The data-driven model inputs and outputs
are presented in this Figure 5.

To estimate an axle bearing temperature,
the remaining axle bearings temperatures
plus the ambient temperature are the only
inputs considered. This is the capital
principle, and very innovative approach, to
build all DT required predictive analytics.

Figure 5. Crespo et al. (2020) approach to predict axle 
bearing temperatures.

Anomalies Detection for CBM
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The anomalies detection rule designed could identify 
damaged bearings with 100% precision, at any speed 
of the train, based on a 10 ◦C Absolute Error (AE) 
threshold for the predicted temperature of the 
bearing. 

A threshold in train speed was introduced in the rule 
just for scoring data sets reduction, and the expected 
subsequent accuracy of the rule’s improvement. 
However, accuracy improvement was found not to be 
very significant for all cases. 

To illustrate the difference in AE data distribution 
when the bearing is in good conditions versus when it 
comes to a degraded state, Figure 7 represents the 
temperature prediction AE distribution in periods of 
good (green) vs. degraded (blue) conditions, with 
train speeds 𝑇𝑆𝑡 ≥90 km/k. 

Anomalies Detection for CBM

Figure 7. Distribution of EA for good (green) and degraded condition (blue) periods, for a train speed 𝑇𝑆𝑡 ≥90 
km/h. Taken from (Crespo Márquez, de la Fuente Carmona, et al., 2020). 
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Failure Mode Classification for CBM

• The train axle bearing FM classification model is the second model contained in the DT of the CBM App 
in this case study. 

• This modelling effort, to identify a certain bearing failure mode, required further ETL processes and 
different modeling tools. The most significant challenge was the decision (of the Smart Maintenance 
Department together with the Maintenance Engineering Department of the company), to approach this 
problem modeling temperature cycles instead of temperature points. 

• This is a popular method (Healey et al., 2021) to study fatigue data analysis of mechanical components. 
In these cases, it is common to reduce a variable stress spectrum into a simpler, equivalent set of 
stresses. Methods that extract successively smaller cycles from a sequence are used to simplify the 
calculation of the fatigue life of a component from these simpler cycles (Healey et al., 2021). 
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Determination of the following variables 

calculated from the extracted ones (Figure 8):

- Accumulated absolute error (𝐴𝑐𝑐 𝐴𝐸): This 

variable accumulates the AE when a 

positive is registered, since the first 

positive.  

- Accumulated kilometers since the first 

positive: This is the total number of kms 

the train run since the first positive was 

registered.

- Accumulated kilometers in positive: This is 

the total number of the kilometers the 

train run in positive, since the first positive. 

Failure Mode Classification for CBM

Figure 8. Sample data regarding Kms traveled in positive for different bearings
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Failure Mode Classification for CBM

Figure 9. Cycle count by varying the maximum distance between positives of the same cycle.
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Obtention of new following variables as per the cycle analysis performed:

- Kilometers at the beginning of the cycle: These are the kilometers that the bearing traveled, from the first positive, until

a new cycle started.

- Kilometers at the end of the cycle: These are the kilometers that the bearing has traveled, from the first positive, until the

end of the cycle.

- Cycle Kms: Kilometers that the train travels in a cycle (the cycle ends when the next positive is farther away from the

previous one, than the limit in km established in each case).

- Kilometers traveled between cycles: These are the kilometers traveled between the end of one cycle and the beginning

of the next one.

- Cumulative cycles: Cumulative number of cycles since the first positive.

- Percentage of kilometers in active cycle: Percentage of kilometers that the bearing accumulates in a cycle since the

appearance of the first cycle.

- Total kilometers in active cycle: Accumulation of kilometers that the bearing run within cycles.

- Accumulated kilometers between cycles: This is the sum of the kilometers that a bearing traveled between cycles, up to

the last cycle.

- Average of the kilometers between cycles: In this section we have the average of the kilometers traveled between cycles.

Making this average gradually as we go from cycle to cycle.

Failure Mode Classification for CBM
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Figure 10. Sample of values obtained for cycle variables, when varying the maximum distance 
selected between positives of the same cycle.

Failure Mode Classification for CBM
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Bearing Samples REDUCTION of DATA POINTS for a
Maximum distance between positives of a cycle of

1km 5km 10km 20km 50km

KZ02 T3 AXLE 29 89.346 65 55 51 42
KZ15 T2 AXLE 1 78.318 416 281 207 152

Although the main aim of the transformation process is to approximate the physical degradation

model in a simpler way, it is observed that the amount of data to be considered and stored for the

bearing analysis is also significantly reduced. The reduction achieved in the data to be stored per

bearing studied is presented in Table 1.

Table 1. Reduction of the number of data records to be captured per bearing when applying 
the cycle algorithm.

Failure Mode Classification for CBM
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Table 2. Example 
of an extract 

with data from 
several 

bearings, 
showing the 

number of data 
lines per bearing 
(assuming 5 km 
as max distance 

between 
positives of a 

cycle)

Failure Mode Classification for CBM
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• Once the required data base is ready for model generation training and production, the process
continues with the algorithm design, testing and validation.

• The algorithm attempts to separate bearings with internal deterioration from those with
overtemperature caused by external causes, mainly due to the train axle guidance system problems.
To that end, it is necessary to know the final diagnosis of all the bearings observed to have suffered
overtemperature cycles. It is essential to have data on whether the bearing was replaced or not, and
if once it was replaced, whether the analysis performed by the quality department found it with
internal deterioration or not.

• Bearings in the train that were not replaced, but which had overtemperature cycles recorded, are
obviously classified as "non-deteriorating" bearings. Basically, most of these bearings went back to
normal temperature conditions when the train guidance problems were solved.

• The algorithm selected for this classification functionality can be chosen among different possibilities:
according to its ROC curve (see Figure 11), classification error, gain, execution time, training time, etc.
For this case, the selected algorithm has been Deep Learning.

Failure Mode Classification for CBM
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Concerning final features selection 
for the model, notice that a 
complexity of 4 features achieved a 
lower error rate that the original 
selected set of 5 (that was also 
including the duration of the cycle, as 
feature). 

So, the model is less complex and 
still more accurate than the original 
feature space (square in the graph). 
Using less features also means that 
models can be trained faster. The 
feature set which has been used to 
build the final model is shown.

Figure 12. Trade-offs between model dimensionality (complexity) and 
error, including final features selection and their weights (RapidMiner ®).

Failure Mode Classification for CBM
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Criterion Value STD

Accuracy 76.3% ± 0.2%

Classification error 23.7% ± 0.2%

AUC 91.6% ± 0.2%

Precision 100% ± 0.0%

Recall 5% ± 1.0%

F Measure 9.5% ± 1.9%

Sensitivity 5% ± 1.0%

Specificity 100% ± 0.0%

True range 1 True range 2 Class Precision

Predicted range 1 785 248 75.99%

Predicted range 2 0 13 100.00%

Class Recall 100.00% 4.98%

Table 4. Sorting algorithm confusion matrix (range 1: 
Guidance FM; range2: Internal FM)

Table 3. Classification algorithm performance metrics

Failure Mode Classification for CBM
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Data analytics for prognostics in CBM

• Failure prognostics is defined (ISO 13381-1:2004) as “the Estimation of the Time to
Failure (ETTF) and the risk of existence or later appearance of one or more failure
modes”. However, in most of the literature related to prognostics, the terminology
Remaining Useful Life (RUL) is used, instead of ETTF (Medjaher, Tobon-Mejia, &
Zerhouni, 2012).

• The concept of the RUL has been widely used in operational research, reliability,
and statistics literature with important applications in other fields such as material
science, biostatistics, and econometrics. Clearly the definition of the useful life
depends on the context and operational characteristics (Si, Wang, Hu, & Zhou,
2011).

• Concerning the estimation of the RUL, the existing approaches fall into three main
categories (Jardine, Lin, & Banjevic, 2006): statistical approaches, artificial
intelligence (AI) approaches and model-based approaches.
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• In this case study a statistical approach is followed to estimate the RUL (of any bearing of a train), once a positive (or
anomaly detected for a failure mode) appears in a train axle bearing.

• A positive (according to the Procedure for the Design and Implementation of CBM Plans in the company) is defined as
the occurrence of an absolute error (AE) of prediction greater than 10ºC between the actual bearing temperature and
that predicted by the ANN designed for detection, when the train is running at more than 90 km/h (i.e., 𝐴𝐸 ≥ 10º𝐶, TS ≥
90 𝑘𝑚/ℎ) and for more than one minute.

• RUL is now defined as a random variable that, estimated from the appearance of the first positive, offers a good
prediction of the life of the element until its replacement due to over temperature or noise. This replacement was
performed after the activation of the safety alert in the train monitoring and control system (TCMS) and/or because of
a certain inspection (probably during a weekly train inspection in the workshop). The safety alert is triggered when the
temperature difference between the four bearings of the same axle is higher than 25°C — (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) ≥ 25°C — and
this condition is maintained for more than 1 minute.

• Company’s objective through the analysis included in this part of the case study is to foresee the recommended time of
bearing replacement, after its first positive, even without prior inspection, according to statistical estimates.

Data analytics for prognostics in CBM
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To calculate the RUL at point A, is necessary to model the
random variable "PF interval", i.e. the interval (in time, km, or
representative unit of measurement) that elapses between the
first positive (point P, agreed in the CBM procedure for: 𝐴𝐸 ≥
10.𝐶, TS ≥ 90 𝑘𝑚/ℎ) and the possible replacement due to
overtemperature and/or noise of a bearing.

The point F considered takes place, in general, after the
activation of the safety alert in the train monitoring and control
system (TCMS), this condition is not of functional loss of the
bearing, but of operation in conditions of lower safety level.
Then it is possible to define, for this case study:

𝑅𝑈𝐿 = 𝑅𝑈𝐿 𝐴𝐹 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (𝑃𝐹 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 − 𝑃𝐴 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙).

The determination of the RUL will be made from the estimation 
of the distribution function of the PF interval, using a statistical 
technique such as the Weibull analysis. 

Figure 13. P-F Curve and P-F time interval. Estimated time to failure (RUL)

Data analytics for prognostics in CBM
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• The functionality of the DT allows the evaluation of the failure mode risk level and the
subsequent control actions, this will allow the maintenance staff to schedule convenient
maintenance activities.

• Interaction with the DT must be done using simple business rules resulting in a practical
business process.

• Any new event detected by the DT leading to a new state of the asset concerning a failure
mode will be a call for maintenance action.

• For the correct interpretation of the method of interaction with the DT, Table 6 describes
the necessary concepts to be reviewed (taken from an original work in Martínez-Galán
Fernández, Guillen López, Crespo Márquez, Gómez Fernández, & Marcos, 2022).

Interaction with the CBM DT
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Interaction with the CBM DT
Concept Types
Event

Recordable, scheduled, or supervening time, at 

which the risk level of the affected failure modes 

must be reanalyzed.

● Monitoring Event: Events taking place because of the CBM App (and its DT algorithms). 

They can be detection events, diagnostics events, or prognostics events.

● Preventive Maintenance Events: Maintenance programmed or unforeseen events. They 

can be for example inspections or any PM activity.

State

Qualitative level of risk at a given time. Each event 

causes a possible change in the level of risk.

● Fault: State after the failure has occurred. State in immediate replacement or repair of 

the item is required.

● High Risk: State of operation closest to failure. Short-term activities are scheduled to 

reduce the level of risk.

● Medium Risk: State in which an anomaly has been detected but with some security it is 

possible to continue operating under normal conditions. Medium-term activities are 

planned to confirm the risk and analyze how it evolves.

● Low Risk: Normal operating state of the item 

Failure Mode

Failure modes involved that can be fully or partially 

managed by CBM. Monitoring solutions and 

maintenance tasks are applied at failure mode level.

● Primary failure mode (PFM)* 

● Secondary failure mode (SFM)*: initiated by a PFM

* Terminology adopted from ISO 13381, (ISO, 2015)

Table 6. Key concepts in DT interaction with maintenance techs. Adapted from (Martínez-Galán 
Fernández, Guillén López, Márquez, Gómez Fernández, & Marcos, 2022) 
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Figure 14. Graphic representation of the CBM APP DT interaction with Maintenance 
technicians. Adapted from (Martínez-Galán  et al., 2022).

To describe these 
concepts in a graphical 
manner, a CBM sequence 
affecting two failure 
modes is pictured in Fig. 
14. In this case, Monitoring 
Events and PM Events 
may change the each one 
of the FMs risk level (FM1: 
Internal degradation and 
FM2: External guidance 
failure). 

Interaction with the CBM DT
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Fulfillment of  DT REQUIREMENTS
Requirement Case study description
Scalability. The DT model has been scalable to all train bearings requiring only the development of

models per axle bearing position, regardless the axle in the train nor the train in the fleet.

Interoperability Data used to train the three different types of models came from the same source and
there is a procedure explaining how original data is converted and matches the different
predictive analytics data models. Real time data is now used to generate an on-line output;

Expansibility. There is a clear possibility to integrate new models. For instance, RUL models based on
machine learning models have been introduced to replace statistical models in some
applications with more consistent data.

Fidelity The ML models for anomalies detection replace in this case, with high tested precision, the
very complex physical models related to the calculation of the dynamic behavior of loads
in the train per axle bearings in each railway point at a certain speed.

Table 7. CBM App DT Fulfillment of the six requirements 
extracted from those found in the DT literature.
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Fulfillment of  DT REQUIREMENTS
Requirement Case study description
Interaction This part has been found a very interesting requirement to fulfill. When modeling a given failure 

mode (FM) different risk levels or states are proposed: low, medium, high and fault. At the same 
time two different types of events may show up: monitoring and preventive maintenance events. It 
is considered that both monitoring events and PM events (with human intervention) may lead to a 
change in the risk level of one or more failure modes of the asset. This is because these events 
trigger a new risk assessment of the affected FMs. A given event may affect different failure modes 
and in different ways. It is also assumed that reaching a new failure mode state triggers a 
maintenance action (the release of an algorithm for detection or prediction, an inspection, a 
replacement, etc.). This human supervision of the model’s performance and interaction with the DT 
resulted to be critical for the DT success.

Integration The DT is to be integrated in the App in place, to control the trains fleet dynamic maintenance. Axle 
bearing DT must be incorporated into the comprehensive train CBM App. In this App, a total of 10 
train critical systems are monitored to generate an on-line train risk assessment and to suggest an 
immediate action. Understanding the implications of each system risk, according to each system 
criticality, is critical to establish an effective dynamic maintenance strategy. In this case this DT has 
been integrated within Google cloud infrastructure/services.

Table 7. CBM App DT Fulfillment of the six requirements 
extracted from those found in the DT literature (cont.).
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• We have seen how to use the DMM framework for the functional definition of a DT
designed to support a CBM application based on predictive analytics.

• We presented the data models for each predictive analytics algorithm.

• We described the information that the end user exchanges with the App and how this
interaction takes place. Moreover, we verified that the design of the DT also meets other
requirements: scalability, interoperability, expandability, fidelity in integration with existing
dynamic maintenance management tools have also been contrasted.

• It is proposed that tools of this type (DTs) should be documented using a scheme like the
DMM, and controlled according to the presented DT requirements.

• In fact, using this framework, any tool used in intelligent applications for maintenance
management can be defined, not only those with an important operational nature such as
the CBM, but also others of a more strategic nature such as those for criticality analysis or
those for long-term asset health analysis.

CONCLUSIONS



THANK 

YOU!
Prof. Adolfo Crespo Marquez
Full Professor, University of Seville, Spain


	Sección predeterminada
	Slide 1

	Sección sin título
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32


