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Abstract

The popularity of the concept of Digital Twins (DT) is emerging.

DTs aim to replicate physical equipment and systems in the digital world through effective integration
of data, models, and decision-support systems, promising a step change in productivity and
sustainable performance.

Several challenges remain to be addressed: General lack of conceptual basis, functional description,
and a clear absence of fully established requirements.

This workshop offers a generic framework for the functional description of a DT designed for
intelligent maintenance purposes, and besides that, list a set of requirements features to fulfill when
developing these tools, according to relevant scientific literature.

The framework for the DT functional description and the DT requirements fulfillment has been tested
in real CBM Applications of TALGO, a well-known high speed train manufacturer. Thanks to this
exigent work environment, the methodology is sufficiently robust to be replicated in other
operational contexts.
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* Introduction to:
o The problem
o The Digital Maintenance Management Framework (DMM Framework)
o The Digital Twins (DT) and their Requirements
* Case Study: Train Axle Bearing CBM DT
o CBM DT explanation using the DMM
Anomalies Detection for CBM
Failure Mode Classification for CBM
Data Analytics for Prognostics for CBM
Interaction with the CBM DT

Fullfilment of DT Requirements
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Introduction B

Rapid advances in digital technologies, data analytics
and artificial intelligence applied to maintenance.

PRE-EXISTING SYSTEMS

These approaches have the potential to transform the MONITORING
way maintenance is managed, generating a deeper / BOXES
understanding of how complex industrial systems
behave and perform, thus enabling us to manage them
better.

In this context, data plays a pivotal role to enhance
maintenance management processes. Data can now be
extracted, prepared, and recorded, for specific decision- \
making maintenance processes, automatically (this is
named ETL extraction-transformation-and-load of data).

Then, intelligent assets management systems apps

(IAMS Apps) support the different decision-making
processes organizing the collection and the analysis of

data.
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IAMS Apps may also interact with additional tools such e
as simulation tools, providing extra analytical services, B iinen | E——————
and they may add complementary data to the database MONITORING s
records with results provided by these software coéﬁgﬁ?ﬁﬁ‘om BOXES

elements. In addition to this asset knowledge
discovering, creation and storing (Marquez et al., 2020), " industrial

Data
these IAMS Apps are provided by vendors together with Platforms ' P— ~ 1AMs:
business intelligence features or Apps (Bl Apps). T Asset Data Model, Rules &

Analysis Functionalities:
. . . . . (Extract, AC, ACR, RCM, CBM,
The Bl App is designed for the interaction with the end Transform & AHI,..

user and extract database records to present the
information according to the reporting needs and end
user requirements, on demand or at the time needed by
the business. A simple data flow of the process is
presented in Figure 1 (adapted from (Marquez et al.,
2020).

Load) ~
-’ Business Intelligence
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Digital Twins and thei_rf

Maintenance is starting to be
the most common application
of DTs, followed by Prognostic
Health Management (PHM) and
lifecycle optimization and the
sectors where it is most applied
are manufacturing, energy
industry and aerospace
(Errandonea, Beltradn and
Arrizabalaga, 2020).

* Applicable to more

equipment or failure

“_ Combinable with different
models and data
Extendable with new models
development

Precise tracking of system
behavior and status

* Decision making and human
interaction

General process and system
architecture integration

Some authors sustain that in
order to be considered a Digital
Twin, a model must have some
specific characteristics:

0O O DO /omaNTECCONS 7

20Y



OMAINTE THE 20™ INTERNATIONAL OPERATIONS & MAINTENANCE
W CONFERENCE IN THE ARAB COUNTRIES

Case Study. The Tra:iw

In the broadest understanding, CBM
solutions include detection,

diagnostics, and prediction of failure Saseine i S O
modes that can be interpreted to |
provide  maintenance  decision-
making (Guillén, Crespo, Gémez, &
Sanz, 2016). This case study DT has
been elaborated to detect, classify,
and predict train axle bearing

£3i] . . . Baseline Diagnostic Prognostic

ailures using bearings monitored Analytics Analytics Analytics

variables. in this case each bearing Health assessment Faulty component detection Remaining useful life
! . . . Anomaly detection Risk assessment

was only monitored capturing its

temperature.
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Anomalies Detect

A train axle bearing temperature depends
on a set of factors when the train is running  Bearing Conditions

at the uninterrupted regime: the type and  (bimension, Lubrication, Position P E

dimensions of bearings, the antifrictional  Train Conditions =
and hydrodynamic properties of the  (StaticandDynamicloads, Speed) o

lubricant, the spaces between the bearing  Travel Conditions — Physical Bearing Temperature
rollers and rings, the static and dynamical ~ (Puration Number ofStops) Model (Ti-1..4)
loads of the bearing, the train running  Railway & —

speed, the duration of travel without stops,  Infrastructure Conditions

the ambient air temperature, and the road  Ambient Temperature .
curves [(Lunys, Dailydka, & Bureika, 2015),

(Mironov AA, 2008)] (see Figure 4).

Figure 4. Factors (physical model inputs) conditioning a train axle bearing temperature.
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Anomalies Detecti

This workshop DT departs from the fact
that the theoretical physical model to
calculate axle bearing temperatures could
be replaced by a data-driven bearing
temperature model as in (Crespo Marquez,
de la Fuente Carmona, Marcos, & Navarro,
2020).

The data-driven model inputs and outputs
are presented in this Figure 5.

To estimate an axle bearing temperature,
the remaining axle bearings temperatures
plus the ambient temperature are the only
inputs considered. This is the capital
principle, and very innovative approach, to
build all DT required predictive analytics.

0O O DO /oMaINTECCONS

Axle Bearings
Temperature —

Remaining Axle
(T; i, &)
bigk Data —» Bearing Temperature
Model K T
Ambient { k,k=1...4}
—_—
Temperature

Figure 5. Crespo et al. (2020) approach to predict axle
bearing temperatures.
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Anomalies Detection

25.00%

The anomalies detection rule designed could identify
damaged bearings with 100% precision, at any speed

of the train, based on a 10 °C Absolute Error (AE) _ /N
threshold for the predicted temperature of the / \
bearin / DISTRIBUTION OF PREDICTION AE IN BEARING T1
g | (WITH T$>90 KM/H) FOR PERIODS
soon | | WITH DEGRADED (BLUE) AND GOOD (GREEN) CONDITION

A threshold in train speed was introduced in the rule |
just for scoring data sets reduction, and the expected /
subsequent accuracy of the rule’s improvement.

However, accuracy improvement was found not to be

10,00%

very significant for all cases. P
500% | o ot A “"‘r.q.m
To illustrate the difference in AE data distribution - \, onx T n——
when the bearing is in good conditions versus when it N 0
comes to a degraded state, Figure 7 represents the . e o Y e
temperature prediction AE distribution in periods of R A e et
good (green) vs. degraded (blue) conditions, with +-GOOD CONDITION  —=—DEGRADED CONDITION
train speeds TS, =290 km/k. Figure 7. Distribution of EA for good (green) and degraded condition (blue) periods, for a train speed TS; =90

km/h. Taken from (Crespo Marquez, de la Fuente Carmona, et al., 2020).
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Failure Mode Classif

* The train axle bearing FM classification model is the second model contained in the DT of the CBM App
in this case study.

* This modelling effort, to identify a certain bearing failure mode, required further ETL processes and
different modeling tools. The most significant challenge was the decision (of the Smart Maintenance
Department together with the Maintenance Engineering Department of the company), to approach this
problem modeling temperature cycles instead of temperature points.

 Thisis a popular method (Healey et al., 2021) to study fatigue data analysis of mechanical components.
In these cases, it is common to reduce a variable stress spectrum into a simpler, equivalent set of
stresses. Methods that extract successively smaller cycles from a sequence are used to simplify the
calculation of the fatigue life of a component from these simpler cycles (Healey et al., 2021).
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Failure Mode Classif

Determination of the following variables — KmACCrecomidosenpositvo
(Grueso: A Calidad; Fino: Resto de sustituidos; Discontinui: No sustituidos)
calculated from the extracted ones (Figure 8):

- Accumulated absolute error (Acc AE): This
variable accumulates the AE when a
positive is registered, since the first
positive.

- Accumulated kilometers since the first
positive: This is the total number of kms
the train run since the first positive was
registered.

- Accumulated kilometers in positive: This is
the total number of the kilometers the
train runin positive, since the first positive, Figure 8. Sample data regarding Kms traveled in positive for different bearings

KZ 15 TOEje 17
=KZ 15T1Eje 22

—KZ 15 T1 Eje 29

—KZ 15 T3 Eje 23

—KZ13TOEje8

Km recorridos en positivo

=KZ Q07 T3 Ejel
=KZ 02 Eje 29 T3
—_— —KZ 06 eje 13 T2
' —-T2E2KZ 15
—-T2ZE13KZ 15

—~T1EBKZ 15

-T2ZE3KZ 15

115200 144000 172800 201600 230400 259200 288000
Km Recorridos
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Failure Mode Classifica

Cycle Number According to Selected Max Distance Between Two Positives of the Same Cycle

18

16

14

1z
S0 krm 80 krn

AE in Prediction (Temp in 2C)

1 Y

B2HNARSABBEERg8E53A8ARR
E Kms since
1* positive
|3
Distance
20 km 1 |2
50 km 1

Figure 9. Cycle count by varying the maximum distance between positives of the same cycle.
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Failure Mode Classif

Obtention of new following variables as per the cycle analysis performed:

Kilometers at the beginning of the cycle: These are the kilometers that the bearing traveled, from the first positive, until
a new cycle started.

Kilometers at the end of the cycle: These are the kilometers that the bearing has traveled, from the first positive, until the
end of the cycle.

Cycle Kms: Kilometers that the train travels in a cycle (the cycle ends when the next positive is farther away from the
previous one, than the limit in km established in each case).

Kilometers traveled between cycles: These are the kilometers traveled between the end of one cycle and the beginning
of the next one.

Cumulative cycles: Cumulative number of cycles since the first positive.

Percentage of kilometers in active cycle: Percentage of kilometers that the bearing accumulates in a cycle since the
appearance of the first cycle.

Total kilometers in active cycle: Accumulation of kilometers that the bearing run within cycles.

Accumulated kilometers between cycles: This is the sum of the kilometers that a bearing traveled between cycles, up to
the last cycle.

Average of the kilometers between cycles: In this section we have the average of the kilometers traveled between cycles.
Making this average gradually as we go from cycle to cycle.

0O O DO /omaINTECCONS 16
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Failure Mode Classificatio
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KM Traveled
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Figure 10. Sample of values obtained for cycle variables, when varying the maximum distance
selected between positives of the same cycle.
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Failure Mode Cla

Although the main aim of the transformation process is to approximate the physical degradation
model in a simpler way, it is observed that the amount of data to be considered and stored for the

bearing analysis is also significantly reduced. The reduction achieved in the data to be stored per
bearing studied is presented in Table 1.

oS

Bearing Samples REDUCTION of DATA POINTS for a
Maximum distance between positives of a cycle of
1km 5km 10km 20km 50km
KZ02 T3 AXLE 29 89.346 65 55 51 42
KZ15 T2 AXLE 1 78.318 416 281 207 152

Table 1. Reduction of the number of data records to be captured per bearing when applying
the cycle algorithm.
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Failure Mode

Bearing Replaced Damaged Kms end of cycle Kms betweenoycles  COycle Kms  Cumulative Cycles Kms in act cycle %Kms in act oycle | Acc Kms betw Cycles Avg Kms betw oy cles

2| KZISTOEE17 1 1 3456 26188 25 1,0 3426 0,3% 26189 26189

w2 | KZ1STOEJE 17 1 1 EET04,7 585 L7 ELD 10667,0 5.4% 56093,2 9196

& KZISTIEE22 1 1 251 80 20 10 220 0,0% 80 80

Table 2. Example 1| KZISTLEE22 1 1 92086,1 11 154,1 1390 9684,0 5,0% 820300 5930
0z, KZIST1EIE29 1 1 12118 134 12099 10 12099 12% 134 134

of an extract s | KZISTLEJE29 1 1 105226,1 8703 183 2580 38379,0 18,7% 677155 2625

. a0 KZI3TIEIE23 1 1 £08 230 338 10 338 0,0% 230 230
with data from 7| KZ13T3EJE 23 1 1 1108974 38653 08 840 122513 5.8% 1024843 3809
Jial KZOTTIEEL 1 1 795615 727 18 10 18 0,0% 727 727

severa | s11) K0T TAEIE L 1 1 1978187 1308 33 580 23423 0,8% 1160475 20008

. 2] KRO2TIEE29 1 1 53 9798 53 10 53 0,0% 9794 9798

be arin gs, 522 K202 T3 EJE 29 1 1 114651,1 23832 10,2 65,0 TIT08 3 6% 1052634 16810

4] KZIST2EEL 0 o 82,7 8199,1 598 1,0 598 0,1% 81991 8199,1

Showing the 1722 KZISTREIEL 0 ] 2036413 .7 EN A16,0 272840 9,0% 176342,1 4239
1 KZIST2EE2 0 o a2 186 34 1,0 34 0,0% 186 185

number of data 1m04)  KZIST2EIE2 0 o 072538 508,7 0,0 505,0 32954 5 10.7% 1748071 45,2
1= KZIST2E)E3 0 o 1862334 29585 66,2 1,0 56,2 0,0% 1851286,1 188126,1

lines per bearin g 1245 KZIST2EIES 0 i 245440,2 58 12,4 1160 57355 2.3% 2397305 20666
150 KZISTOEIES 1 1 a68 14,2 a68 10 468 0,0% 14,2 14,2

(assum lng 5 km 1562 K215 TOEJE 8 1 1 203616 TS 4.7 330 25100 2,1% 178594 5412
1= KZIST1EIES 0 0 185 55 185 10 185 0,0% 55 55

H s KPISTLEIES 0 ] 184543 8 812 33 170 93839 33% 1756411 22811

ds max dlstance meo  KZIST2EJE 13 0 o 137 B9E 126 10 126 0,0% 898 898
37| KZ15 T2 EJE 13 0 i 2703188 518 a0 BTED IR209.0 10,3% 2321805 2644

between mzl KIITIEELS 1 0 a8 101 98 10 98 0,0% 101 101

i ao72| KZ11T1EJE 15 1 ] 1237169 2350 65 1160 136412 6,1% 1103106 9510
pOSltIVES Of d aor KZISTLENE 19 1 0 28 235436 28 10 28 0,0% 235436 235435
Cy CI e) 117 KZ15T1EJE 19 1 i 2325835 aa,1 63 ETY g1l 0,5% 2308154 B4115

sl KZO2T2ENE27 1 o ale as0 a5 1,0 415 0,0% 460 as0

00| K202 T2 EJE 27 1 ] 2550017 [ 1979 2480 134596 38% 2415485 a74,0

a0y KRO2 T3 EJE 27 1 o 13 359 ik 1,0 73 0,0% 359 359

14s3| K202 T3 EJE 27 1 i 3198076 G3TE 2016 54,0 28903 0,7% 3175549 S8R06

151 KZI6T1ENE29 1 o 30 A618,3 30 1,0 3,0 0,0% 46183 a618,3

sec0|_ KZ16T1EJE 29 1 i 2533753 80 L6 1710 TE0,0 2.3% 2457792 14373
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Failure Mode Classi

* Once the required data base is ready for model generation training and production, the process
continues with the algorithm design, testing and validation.

* The algorithm attempts to separate bearings with internal deterioration from those with
overtemperature caused by external causes, mainly due to the train axle guidance system problems.
To that end, it is necessary to know the final diagnosis of all the bearings observed to have suffered
overtemperature cycles. It is essential to have data on whether the bearing was replaced or not, and
if once it was replaced, whether the analysis performed by the quality department found it with
internal deterioration or not.

20 Y

e Bearings in the train that were not replaced, but which had overtemperature cycles recorded, are
obviously classified as ""non-deteriorating" bearings. Basically, most of these bearings went back to
normal temperature conditions when the train guidance problems were solved.

* The algorithm selected for this classification functionality can be chosen among different possibilities:
according to its ROC curve (see Figure 11), classification error, gain, execution time, training time, etc.
For this case, the selected algorithm has been Deep Learning.

0O O DO /omaINTECCONS 20
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Failure Mode Cli

assifica

Optimal Trade-offs between Complexity and Error
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z
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E s
g2
2.0 Q@
1.5
1.0 1
24.00% 24.25% 24.50% 24.75% 25.00%

Error

. Used feature set @ Optimal trade-offs  [J Original feature set

Deep Learning - Weights
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& Shown below

Concerning final features selection
for the model, notice that a
complexity of 4 features achieved a
lower error rate that the original
selected set of 5 (that was also
including the duration of the cycle, as
feature).

So, the model is less complex and
still more accurate than the original
feature space (square in the graph).
Using less features also means that
models can be trained faster. The
feature set which has been used to
build the final model is shown.

Figure 12. Trade-offs between model dimensionality (complexity) and
error, including final features selection and their weights (RapidMiner ®). 21
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Failure Mode Classi:

Criterion Value STD -
Accuracy 76.3% +0.2% -
e _|_o || e & O
% +0.2%
Precision 100% + 0.0%
Recall 5% +1.0%
Class Recall 100.00% 4.98%
F Measure 9.5% +1.9%
Sensitivity 5% +1.0% ) ) . .
- - . Table 4. Sorting algorithm confusion matrix (range 1:
Specificity lotez: e Guidance FM; range2: Internal FM)

Table 3. Classification algorithm performance metrics

0O O DO /omaINTECCONS 22
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Data analytics for pi

Failure prognostics is defined (ISO 13381-1:2004) as “the Estimation of the Time to
Failure (ETTF) and the risk of existence or later appearance of one or more failure
modes”. However, in most of the literature related to prognostics, the terminology
Remaining Useful Life (RUL) is used, instead of ETTF (Medjaher, Tobon-Mejia, &
Zerhouni, 2012).

The concept of the RUL has been widely used in operational research, reliability,
and statistics literature with important applications in other fields such as material
science, biostatistics, and econometrics. Clearly the definition of the useful life
depends on the context and operational characteristics (Si, Wang, Hu, & Zhou,
2011).

Concerning the estimation of the RUL, the existing approaches fall into three main
categories (Jardine, Lin, & Banjevic, 2006): statistical approaches, artificial
intelligence (Al) approaches and model-based approaches.

0O O DO /omaINTECCONS 23
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* In this case study a statistical approach is followed to estimate the RUL (of any bearing of a train), once a positive (or
anomaly detected for a failure mode) appears in a train axle bearing. |

* A positive (according to the Procedure for the Design and Implementation of CBM Plans in the company) is defined as
the occurrence of an absolute error (AE) of prediction greater than 10°C between the actual bearing temperature and
that predicted by the ANN designed for detection, when the train is running at more than 9o km/h (i.e., AE = 10°C, TS >
90 km/h) and for more than one minute.

* RUL is now defined as a random variable that, estimated from the appearance of the first positive, offers a good
prediction of the life of the element until its replacement due to over temperature or noise. This replacement was
performed after the activation of the safety alert in the train monitoring and control system (TCMS) and/or because of
a certain inspection (probably during a weekly train inspection in the workshop). The safety alert is triggered when the
temperature difference between the four bearings of the same axle is higher than 25°C — (Tmax - Tmin) = 25°C — and
this condition is maintained for more than 1 minute.

* Company’s objective through the analysis included in this part of the case study is to foresee the recommended time of
bearing replacement, after its first positive, even without prior inspection, according to statistical estimates.
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Data analytics for

To calculate the RUL at point A, is necessary to model the
random variable "PF interval", i.e. the interval (in time, km, or
representative unit of measurement) that elapses between the
first positive (point P, agreed in the CBM procedure for: AE >
10.C, TS = 90 km/h) and the possible replacement due to
overtemperature and/or noise of a bearing.

Point I:
Incipient failure mode, change in condition

Point P:

Detectable condition of potential failure
L4

«— Point A:
Point of RUL measurement

The point F considered takes place, in general, after the
activation of the safety alert in the train monitoring and control
system (TCMS), this condition is not of functional loss of the
bearing, but of operation in conditions of lower safety level. Time .

Then it is possible to define, for this case study: ormeasurementunits  Remamingusefullife

Condition

Point F:
Condition of functional
failure

" P-F Interval |

RUL = RUL AF interval = (PF Interval — PA Interval). .

The determination of the RUL will be made from the estimation
of the distribution function of the PF interval, using a statistical
technique such as the Weibull analysis.

Figure 13. P-F Curve and P-F time interval. Estimated time to failure (RUL)
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Interaction with th

* The functionality of the DT allows the evaluation of the failure mode risk level and the
subsequent control actions, this will allow the maintenance staff to schedule convenient
maintenance activities.

* Interaction with the DT must be done using simple business rules resulting in a practical
business process.

* Any new event detected by the DT leading to a new state of the asset concerning a failure
mode will be a call for maintenance action.

* For the correct interpretation of the method of interaction with the DT, Table 6 describes
the necessary concepts to be reviewed (taken from an original work in Martinez-Galan
Ferndndez, Guillen Lépez, Crespo Marquez, Gémez Fernandez, & Marcos, 2022).
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Concept Types
Event ® Monitoring Event: Events taking place because of the CBM App (and its DT algorithms).
Recordable, scheduled, or supervening time, at They can be detection events, diagnostics events, or prognostics events.
which the risk level of the affected failure modes ® Preventive Maintenance Events: Maintenance programmed or unforeseen events. They
must be reanalyzed. can be for example inspections or any PM activity.

e Fault: State after the failure has occurred. State in immediate replacement or repair of
the item is required.

e High Risk: State of operation closest to failure. Short-term activities are scheduled to
reduce the level of risk.

e Medium Risk: State in which an anomaly has been detected but with some security it is
possible to continue operating under normal conditions. Medium-term activities are
planned to confirm the risk and analyze how it evolves.

® Low Risk: Normal operating state of the item

® Primary failure mode (PFM)*

Secondary failure mode (SFM)*: initiated by a PFM

State
Qualitative level of risk at a given time. Each event
causes a possible change in the level of risk.

Failure Mode
Failure modes involved that can be fully or partially
managed by CBM. Monitoring solutions and

* Terminol dopted f ISO 13381, (ISO, 2015
maintenance tasks are applied at failure mode level. erminology adopted from , (150, )

Table 6. Key concepts in DT interaction with maintenance techs. Adapted from (Martinez-Galdn
Fernandez, Guillén Lépez, Marquez, Gdmez Fernandez, & Marcos, 2022)

ey s
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Interaction with the CB

Event 5:
Event 1 Event 2 Event 3 Event 4 Substitution

To describe these
concepts in a graphical
manner, a CBM sequence
affecting two failure
modes is pictured in Fig.
14. In this case, Monitoring
Events and PM Events
may change the each one |
of the FMs risk level (FM1: | 5 | ks

Medium Risk

'
Internal degradation and i &
i . ¥ i
FM2: External guidance _ i The degradation | Detection ' pegradation | Degradation |
faiIUI’E) g CBTAINED INFO ! process begins 1 FM1 or FM2 L FMI | FMI Confirmed |
. | Activate Calculation § Planning | Planning | Substitution |
ACTION § of Variable X Elmpec(ion Inspection 2 | required : t, time

Figure 14. Graphic representation of the CBM APP DT interaction with Maintenance
technicians. Adapted from (Martinez-Galdn et al., 2022).
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M
Case study description
Scalability. The DT model has been scalable to all train bearings requiring only the development of
models per axle bearing position, regardless the axle in the train nor the train in the fleet.
S I Data used to train the three different types of models came from the same source and

there is a procedure explaining how original data is converted and matches the different
predictive analytics data models. Real time data is now used to generate an on-line output;

N

-

Expansibility. There is a clear possibility to integrate new models. For instance, RUL models based on
machine learning models have been introduced to replace statistical models in some
applications with more consistent data.

Fidelity The ML models for anomalies detection replace in this case, with high tested precision, the
very complex physical models related to the calculation of the dynamic behavior of loads
in the train per axle bearings in each railway point at a certain speed.

Table 7. CBM App DT Fulfillment of the six requirements
extracted from those found in the DT literature.
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Interaction This part has been found a very interesting requirement to fulfill. When modeling a given failure
mode (FM) different risk levels or states are proposed: low, medium, high and fault. At the same
time two different types of events may show up: monitoring and preventive maintenance events. It
is considered that both monitoring events and PM events (with human intervention) may lead to a
change in the risk level of one or more failure modes of the asset. This is because these events
trigger a new risk assessment of the affected FMs. A given event may affect different failure modes
and in different ways. It is also assumed that reaching a new failure mode state triggers a
maintenance action (the release of an algorithm for detection or prediction, an inspection, a
replacement, etc.). This human supervision of the model’s performance and interaction with the DT
resulted to be critical for the DT success.

Integration The DT is to be integrated in the App in place, to control the trains fleet dynamic maintenance. Axle
bearing DT must be incorporated into the comprehensive train CBM App. In this App, a total of 10
train critical systems are monitored to generate an on-line train risk assessment and to suggest an
immediate action. Understanding the implications of each system risk, according to each system
criticality, is critical to establish an effective dynamic maintenance strategy. In this case this DT has
been integrated within Google cloud infrastructure/services.

Table 7. CBM App DT Fulfillment of the six requirements
extracted from those found in the DT literature (cont.). 30
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CONCLUSIONS

* We have seen how to use the DMM framework for the functional definition of a DT
designed to support a CBM application based on predictive analytics.

* We presented the data models for each predictive analytics algorithm.

* We described the information that the end user exchanges with the App and how this
interaction takes place. Moreover, we verified that the design of the DT also meets other
requirements: scalability, interoperability, expandability, fidelity in integration with existing
dynamic maintenance management tools have also been contrasted.

* It is proposed that tools of this type (DTs) should be documented using a scheme like the
DMM, and controlled according to the presented DT requirements.

* In fact, using this framework, any tool used in intelligent applications for maintenance
management can be defined, not only those with an important operational nature such as
the CBM, but also others of a more strategic nature such as those for criticality analysis or
those for long-term asset health analysis.
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